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Introduction: -Some fundamental properties about measure of non-compactness   of bounded sets in a metric 

space are given by Kuratowski [1]Mussbaum [2] Iseki [3] . 

 Furi and Vignoli (2) have proved the following theorem - 

Theorem 1 :-Let T be a continuous, densifying mapping of a bounded complete metric space (X,d) into itself. 

If for every yx,  inX, yx   in x ,  ),(),( yxdTyTxd   then T has a fixed point. 

  Afterwards Iseki (3) generalized the above result and proved the following theorem :- 

Theorem 2 :- Let T be a continuous, densifying mapping of a bounded complete metric space (X,d) itself. If 

for every yx, in X, yx  , Txx  ,  )},(),({),(),( TyydTxxdbyxadTyTxd   where a,b are non- negative 

and a+2b=1 then T has a fixed point. 

Definition :- Let (X,d) be a metric space. T be a mapping of X into itself. The mapping T is called densifying 

if for every bounded sub set A of X with 0)( A  we have )())(( AAT   . 

   

In this paper we shall prove a fixed point theorems for  two continuous densifying mapping. 

Our Main Result  
Theorem:-Let  S and T be a two continuous densifying mapping of a bounded complete metric space (X,d) 

satisfying conditions 

 

[I]For every x,y in X, yx  , Tyx   

)],([ STySxd   𝛼  
d Ty ,Sx   d x,STy +d x,Sx   d Ty,STy 

 d x,Ty 
 

2

 

 +𝛽  
d x, Sx  d Ty, STy + d x, STy  𝑑 𝑇𝑦, Sx 

 d x, Ty 
 

2

+   
  d x, Ty d x, STy +   d x, Ty d Ty, Sx 

 d x, STy + d Ty, Sx 
 

2

 

 

                                                            2 

 

[II]ST=TS  

Where  ,   and   are non-negative reals and 1  then S and T have a common fixed point in X 

which is unique if  𝛼 + 𝛽 + 2𝛾 = 1. 
Proof :-Let 0x  be a point of X and we define  sequence 𝑥𝑛  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 nn Sxx 212  , 1222   nn Txx in Xfor n= 

0,1,2,3,…….Put A= {
12 nx :n=0,1,2,3..}Then ST (A)   A and by the continuity of S and T. We have S

AATSAT  )()(  Hence )(A  isinvariant under S ,T and is bounded.Suppose 0)( A , since )(ASTA 

}{ ix  We have 
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  )}()),(({)( 0xASTMaxA   = ))(( AST < )(A  

This is a contradiction.Since the mappings S and T is densifying  so 0)( A  which implies that A is pre 

compact and since X is complete metric space. A  is compact define a real valued function f on X by f(x)= 

d(Tx,STx). By the hypothesis, d(x,Tx) is continuous on the compact subject A , Hence d(x,Tx) has a minimum 

point u in A . To prove that uis a fixed point of S.Suppose Suu   we have. 

f(Su)= )],([ STSuSTud   𝛼  
d TSu ,STu   d Tu,STSu  +d Tu ,STu   d TSu ,STSu  

 d Tu ,TSu  
 

2

 

 +𝛽  
d Tu, STu  d TSu, STSu + d Tu, STSu  𝑑 𝑇𝑆𝑢, STu 

 d Tu, TSu 
 

2

 

+γ  
  d Tu ,TSu  d Tu ,STSu  +  d Tu ,TSu  d TSu ,STu  

 d Tu ,STSu  +d TSu ,STu  
 

2
 

 

(1 − 𝛼 − 𝛽) )],([ STSuSTud     𝑑 𝑇𝑢, 𝑇𝑆𝑢  

)],([ STSuSTud < [


 1−𝛼−𝛽 
] d Tu, TSu  

i.e.  )],([ STSuSTud < d Tu, TSu  

This is a contradiction.So we haveu is a fixed point of S i.e. Su=u. We have𝑆Tu = TSu = Tu.  

Now we shall prove that Tu=u .If not, let us suppose that Tu≠u then by [1] we have d u, Tu =  d Su, STu <

𝛼  
d Tu,u  d u,Tu +d u,u  d Tu,Tu 

 d u,Tu 
 
2

 

 +𝛽  
d u, u  d Tu, Tu + d u, Tu  𝑑 Tu, u 

 d u, Tu 
 

2

+ 
 
  d u, Tu d u, Tu +   d u, Tu d Tu, u 

 d u, Tu + d Tu, u 
 

2

 

 

< 𝛼d Tu, u + 𝛽d Tu, u  + 2 d Tu, u  

< (𝛼 + 𝛽 + 2 )d Tu, u  

i.e.d u, Tu < d Tu, u  

This is contradiction .So Tu=u. 

Uniqueness:- If we possible let w be the another fixed point of Tsuch that u≠w then d u, w = )],([ STwSud

  𝛼  
d w,u  d u,w +d u,u  d w,w 

 d u,w 
 

2

 

                                                            3 

 

 +𝛽  
d u, u  d w, w + d u, w  𝑑 𝑤, u 

 d u, w 
 

2

+   
  d u, w d u, w +   d u, w d w, u 

 d u, w + d w, u 
 

2

 

 

 

  (𝛼 + 𝛽 + 2𝛾)d w, u        i.e.     d u, w < d u, w  
This is contradiction .So u=w.Therefore u is a unique common fixed point  This completes the proof. 
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