Fixed Point Theorem for Densifying Mapping in Complete Metric Space

Ganesh Kumar Soni Deptt. of Mathematics, Govt. P.G.College, Narsinghpur (M.P.)

Abstract: - In this paper, we shall prove a fixed point theorem for continuous densifying mapping.

Keywords: - Complete metric space, Fixed point, Compactness, Densifying mapping

Introduction: -Some fundamental properties about measure of non-compactness α of bounded sets in a metric space are given by Kuratowski [1]Mussbaum [2] Iseki [3].

Furi and Vignoli (2) have proved the following theorem -

Theorem 1:-Let T be a continuous, densifying mapping of a bounded complete metric space (X,d) into itself. If for every x, y in X, $x \ne y$ in x, d(Tx,Ty) < d(x,y) then T has a fixed point.

Afterwards Iseki (3) generalized the above result and proved the following theorem:

Theorem 2:- Let T be a continuous, densifying mapping of a bounded complete metric space (X,d) itself. If for every x, y in X, $x \neq y$, $x \neq Tx$, $d(Tx,Ty) < ad(x,y) + b\{d(x,Tx) + d(y,Ty)\}$ where a,b are non-negative and a+2b=1 then T has a fixed point.

Definition: Let (X,d) be a metric space. T be a mapping of X into itself. The mapping T is called densifying if for every bounded sub set A of X with $\alpha(A) > 0$ we have $\alpha(T(A)) < \alpha(A)$.

In this paper we shall prove a fixed point theorems for two continuous densifying mapping.

Our Main Result

Theorem:-Let S and T be a two continuous densifying mapping of a bounded complete metric space (X,d) satisfying conditions

[I]For every x,y in X, $x \neq y$, $x \neq Ty$

$$[d(Sx,STy)] < \alpha \left[\frac{d(Ty,Sx)\sqrt{d(x,STy)} + d(x,Sx)\sqrt{d(Ty,STy)}}{d(x,Ty)} \right]^{2} + \beta \left[\frac{d(x,Sx)\sqrt{d(Ty,STy)} + d(x,STy)\sqrt{d(Ty,Sx)}}{d(x,Ty)} \right]^{2} + \gamma \left[\frac{\sqrt{d(x,Ty)d(x,STy)} + \sqrt{d(x,Ty)d(Ty,Sx)}}{\sqrt{d(x,STy)} + d(Ty,Sx)} \right]^{2}$$

2

[II]ST=TS

Where α , β and γ are non-negative reals and $\alpha + \beta + \gamma = 1$ then S and T have a common fixed point in X which is unique if $(\alpha + \beta + 2\gamma) = 1$.

Proof :-Let x_0 be a point of X and we define sequence $\{x_n\}$ such that $x_{2n+1} = Sx_{2n}$, $x_{2n+2} = Tx_{2n+1}$ in Xfor n= 0,1,2,3,......Put $A = \{x_{2n+1} : n=0,1,2,3...\}$ Then ST $A = \{x_{2n+1}$

$$\alpha(A) = Max\{\alpha(ST(A)), \alpha(x_0)\} = \alpha(ST(A)) < \alpha(A)$$

This is a contradiction. Since the mappings S and T is densifying so $\alpha(A) = 0$ which implies that A is pre compact and since X is complete metric space. \overline{A} is compact define a real valued function f on X by f(x) = d(Tx,STx). By the hypothesis, d(x,Tx) is continuous on the compact subject \overline{A} , Hence d(x,Tx) has a minimum point u in \overline{A} . To prove that uis a fixed point of S. Suppose $u \neq Su$ we have.

$$f(Su) = \left[d(STu, STSu) \right] < \alpha \left[\frac{d(TSu, STu) \sqrt{d(Tu, STSu)} + d(Tu, STu) \sqrt{d(TSu, STSu)}}{d(Tu, TSu)} \right]^{2}$$

$$+ \beta \left[\frac{d(Tu, STu) \sqrt{d(TSu, STSu)} + d(Tu, STSu) \sqrt{d(TSu, STSu)}}{d(Tu, TSu)} \right]^{2}$$

$$+\gamma\left[\frac{\sqrt{d(Tu,TSu)d(Tu,STSu)}+\sqrt{d(Tu,TSu)d(TSu,STu)}}{\sqrt{d(Tu,STSu)+d(TSu,STu)}}\right]^2$$

$$(1 - \alpha - \beta)[d(STu, STSu)] < \gamma d(Tu, TSu)$$

$$[d(STu, STSu)] < [\frac{\gamma}{(1-\alpha-\beta)}] d(Tu, \frac{TSu}{})$$

i.e.
$$[d(STu, STSu)] < d(Tu, TSu)$$

This is a contradiction. So we have u is a fixed point of u i.e. u i.e. u is a contradiction. So we have u is a fixed point of u i.e. u i.e. u is a contradiction.

Now we shall prove that Tu=u .If not, let us suppose that Tu≠u then by [1] we have d(u, Tu) = d(Su, STu) <

$$\alpha \left[\frac{d(Tu,u)\sqrt{d(u,Tu)+d(u,u)\sqrt{d(Tu,Tu)}}}{d(u,Tu)} \right]^2$$

$$+\beta \left[\frac{\mathsf{d}(\mathsf{u},\mathsf{u})\sqrt{\mathsf{d}(\mathsf{T}\mathsf{u},\mathsf{T}\mathsf{u})}+\mathsf{d}(\mathsf{u},\mathsf{T}\mathsf{u})\sqrt{\mathsf{d}(\mathsf{T}\mathsf{u},\mathsf{u})}}{\mathsf{d}(\mathsf{u},\mathsf{T}\mathsf{u})}\right]^2 + \gamma \left[\frac{\sqrt{\mathsf{d}(\mathsf{u},\mathsf{T}\mathsf{u})\mathsf{d}(\mathsf{u},\mathsf{T}\mathsf{u})}+\sqrt{\mathsf{d}(\mathsf{u},\mathsf{T}\mathsf{u})\mathsf{d}(\mathsf{T}\mathsf{u},\mathsf{u})}}{\sqrt{\mathsf{d}(\mathsf{u},\mathsf{T}\mathsf{u})}+\mathsf{d}(\mathsf{T}\mathsf{u},\mathsf{u})}}\right]^2$$

$$< \alpha d(Tu, u) + \beta d(Tu, u) + 2\gamma d(Tu, u)$$

 $< (\alpha + \beta + 2\gamma) d(Tu, u)$

i.e.d(u, Tu) < d(Tu, u)

This is contradiction .So Tu=u.

Uniqueness:- If we possible let w be the another fixed point of Tsuch that $u \neq w$ then d(u, w) = [d(Su, STw)]

$$< \qquad \alpha \left[\frac{\mathsf{d}(\mathsf{w},\mathsf{u})\sqrt{\mathsf{d}(\mathsf{u},\mathsf{w})+}\mathsf{d}(\mathsf{u},\mathsf{u})\sqrt{\mathsf{d}(\mathsf{w},\mathsf{w})}}{\mathsf{d}(\mathsf{u},\mathsf{w})} \right]^2$$

3

$$+\beta\left[\frac{\mathrm{d}(\mathsf{u},\mathsf{u})\sqrt{\mathrm{d}(\mathsf{w},\mathsf{w})+\mathrm{d}(\mathsf{u},\mathsf{w})\sqrt{d}(\mathsf{w},\mathsf{u})}}{\mathrm{d}(\mathsf{u},\mathsf{w})}\right]^2+\gamma\left[\frac{\sqrt{\mathrm{d}(\mathsf{u},\mathsf{w})\mathrm{d}(\mathsf{u},\mathsf{w})+\sqrt{\mathrm{d}(\mathsf{u},\mathsf{w})\mathrm{d}(\mathsf{w},\mathsf{u})}}}{\sqrt{\mathrm{d}(\mathsf{u},\mathsf{w})+\mathrm{d}(\mathsf{w},\mathsf{u})}}\right]^2$$

$$< (\alpha + \beta + 2\gamma)d(w, u)$$
 i.e. $d(u, w) < d(u, w)$

This is contradiction .So u=w.Therefore u is a unique common fixed point This completes the proof.

References

[1]Kuratowski, C.(1966): Topologic, 1. PWN, Warasawa

[2]Furi, M. and Vignoli, A(1969): A fixed point theorem is complete metric spaces, Boll U.M.I. (4), 4-5, 505-509

[3] Nussbaum, R.D.(1971): The fixed point Index for local condensing maps. Ann. Mat. Pura App. 89, 217-258.

[4]Iseki, K.(1974): Fixed point theorem for Densifying mapping, Math seminar Notes, 2, 70-74, (Kove Univ.)

